BIOL 325 – Introduction to Animal Mechanics and Locomotion

General Course Syllabus (as of September 2019)

About the Course:

Course Description: This course introduces the concepts of biomechanics: the study of biological problems through the application of mechanical and engineering principles. It will cover the properties and function of biological materials (e.g. functional design of skeletal lever systems), effects of organism size, and different forms of animal locomotion, with a particular emphasis on vertebrates and on flying and swimming.

Course Format: Lecture Credits: 3 Pre-requisites: BIOL 121

Course Learning Objectives:

By the end of this course, students will be able to:

- Build a foundation in basic physics and engineering principles used in comparative biomechanics.
- Explain the mechanics of biological materials, swimming, flying, and terrestrial locomotion.
- Apply concepts of Newtonian mechanics, scaling/allometry of biological systems, properties of biological materials, and fluid dynamics to describe, perform calculations, and predict the functional design of biological systems.

Textbooks and Additional Resources:

Recommended Text: Comparative Biomechanics: Life's Physical World, 2nd edition, Steven Vogel, Princeton Univ. Press.

Canvas: Canvas is the main port of call for communication in this course. All important course information will be posted here, along with lecture slides, practice questions, and links to relevant online material. Please check the announcements tab REGULARLY for updates/info. This is where students will be alerted to any changes to class schedules, updated course information, and answers to common questions.

Evaluation:

Assessment	Weight
Midterm 1	25%
Midterm 2	25%
Final	50%

Schedule of Topics:

Below is a sample schedule of topics from 2018W (subject to change):

oic	
Introduction to, and history of, biomechanics	
e language of biomechanics	
ces, levers, and skeletons	
scles	
scles II	
aling I	
aling II	
terial properties I: solids	
terial properties II: fluids	
noulli I	
noulli II	
ynolds number	
e in low vs high Reynolds number	
iterm exam 1	
w and drag	
id flow II pressure coefficients and drag	
ction drag and pressure drag	
o to flight and lift	
neration of lift and thrust	
ng loading	
ang ngnt n	
pping night	
Int I. using environmental energy	
voring flight	
oct flight	
oduction to swimming	
h swimming: momontum transfor	
dy and caudal fin swimming	
dial and paired fin swimming	
dial and paired fin swimming I	
ting propulsion	
imming insects	
st of transport	
e-final study session	

University Policies:

UBC provides resources to support student learning and to maintain healthy lifestyles but recognizes that sometimes crises arise and so there are additional resources to access including those for survivors of sexual violence.

UBC values respect for the person and ideas of all members of the academic community. Harassment and discrimination are not tolerated nor is suppression of academic freedom.

UBC provides appropriate accommodation for students with disabilities and for religious, spiritual and cultural observances.

UBC values academic honesty and students ae expected to acknowledge the ideas generated by others and to uphold the highest academic standards in all of their actions.

Details of the policies and how to access support are available on the UBC Senate website.